	To find the equation of a tangent to a curve:

1) find the derivative, 
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2) find the gradient, m, of the tangent by substituting in the x-ccordinate of the point;

3) use one of the following formulae to get the equation of the tangent:

EITHER
y = mx + c

OR
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	To find the equation of a normal to a curve:

1) find the derivative 
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;

2) Substitute in the x-coordinate of the point to find the value of the gradient there.

3) the gradient of the normal is 
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4) Use one of the following formulae to get the equation of the normal:

EITHER
y = mx + c


OR
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	To find the coordinates of maximum/ minimum points on a curve:

1) differentiate to get 
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2) solve the equation 
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3) find the y-coordinates of the points

4) determine whether the points are a maximum or minimum EITHER using the second derivative OR by considering the gradient either side of the point.

	Example:

Find the equation of the tangent to the curve 
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 at the point where the curve crosses the y-axis.

Solution:

Expanding the brackets: 
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Differentiate:  
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The curve crosses the y-axis at the point (0, -2).

The gradient of the tangent at x = 0 is: 
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To find the equation of the tangent:
EITHER:
y = mx + c


y = 3x + c
Substitute x = 0, y = -2:
-2 = 3(0) + c   i.e. c = -2.

So equation is 
y = 3x - 2 

OR:
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  where m = 3

Substitute x = 0, y = -2: 
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i.e.
y = 3x - 2
	Applications of Differentiation

	Recall:  A turning point is a maximum if 
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A turning point is a minimum if 
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	Example:

Find the equation of the normal to the curve 
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 at the point where x = 4.
Solution:

The curve can be written as 
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Therefore, 
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When x = 4, 
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and                
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So the gradient of the normal is 
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To find the equation of the tangent:


y = mx + c  
[image: image22.wmf]Þ

  y = 4x + c
Substitute x = 4, y = 2:
2 = 4(4) + c   i.e. c = -14.

So equation is 
y = 4x – 14.
	Example:

Find the coordinates of the stationary points on the curve 
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Solution:  
[image: image24.wmf]2

61824

dy

xx

dx

=--


At a stationary point, 
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Therefore, 
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 or 
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Factorising gives (x + 1)(x – 4) = 0.

Therefore x = -1 or x = 4.

When x = -1, y = 28.  When x = 4, y = -97.
The 2nd derivative is 
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When x = -1, 
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 so (-1, 28) is a MAX.

When x = 4, 
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 so (4, -97) is a MIN.
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