OCR Further Mathematics 1 (FP1) Solutions: January 2007

1 (i)

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
a & -1 \\
-3 & -2
\end{array}\right) \\
& 2 \mathbf{A}+\mathbf{B}=2\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)+\left(\begin{array}{cc}
a & -1 \\
-3 & -2
\end{array}\right)=\left(\begin{array}{cc}
4+a & 1 \\
3 & 2
\end{array}\right) .
\end{aligned}
$$

As the answer is $\left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right)$, we know that $4+a=1$, i.e. that $a=-3$.
(ii)

$$
\mathbf{A B}=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\left(\begin{array}{cc}
a & -1 \\
-3 & -2
\end{array}\right)=\left(\begin{array}{ll}
2 a-3 & -2-2 \\
3 a-6 & -3-4
\end{array}\right)=\left(\begin{array}{ll}
2 a-3 & -4 \\
3 a-6 & -7
\end{array}\right)
$$

As the answer is $\left(\begin{array}{ll}7 & -4 \\ 9 & -7\end{array}\right)$, we know that $2 a-3=7$, i.e. $a=5$.
This value also makes the bottom left entry correct.
2 Let $a+b i$ be a square root of $15+8$ i.
Then $(a+b i)^{2}=15+8 i$
So, $a^{2}+2 a b i-b^{2}=15+8 i \quad\left(\right.$ using $\left.i^{2}=-1\right)$.
Comparing the imaginary parts, we have $2 a b=8$, i.e. $a b=4$.
Comparing the real parts, we have $a^{2}-b^{2}=15$.
As $b=4 / a$, we can write this as: $a^{2}-\frac{16}{a^{2}}=15$
Multiplying through by a^{2} gives: $a^{4}-16=15 a^{2}$ or $a^{4}-15 a^{2}-16=0$.
This factorises: $\left(a^{2}-16\right)\left(a^{2}+1\right)=0$
The solutions of this are $\quad a^{2}=16$ i.e. $a= \pm 4$
or $\quad a^{2}=-1 \quad$ (this has no real solutions)
If $a=4$, then $b=4 / 4=1$
If $a=-4$, then $b=4 /-4=-1$.
So the square roots are $4+\mathrm{i}$ and $-4-\mathrm{i}$.

The standard results are: $\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$ (LEARN) and $\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}$ (IN FORMULA BOOK).

$$
\begin{aligned}
\sum_{r=1}^{n} r(r-1)(r+1) & =\sum_{r=1}^{n} r\left(r^{2}-1\right)=\sum_{r=1}^{n}\left(r^{3}-r\right) \\
& =\sum_{r=1}^{n} r^{3}-\sum_{r=1}^{n} r \\
& =\frac{1}{4} n^{2}(n+1)^{2}-\frac{1}{2} n(n+1) \\
& =\frac{1}{4} n^{2}(n+1)^{2}-\frac{2}{4} n(n+1) \quad \text { (changing to a common denominator) }
\end{aligned}
$$

Taking out a common factor,

$$
\begin{aligned}
\sum_{r=1}^{n} r(r-1)(r+1) & =\frac{1}{4} n(n+1)[n(n+1)-2] \\
& =\frac{1}{4} n(n+1)\left(n^{2}+n-2\right) \\
& =\frac{1}{4} n(n+1)(n+2)(n-1)
\end{aligned}
$$

4 (i) $\quad|z-1+\mathrm{i}|=\sqrt{ } 2$ can be expressed as $|z-(1-\mathrm{i})|$ $=\sqrt{ } 2$

This represents a circle, centre $1-\mathrm{i}$, radius $\sqrt{ } 2$. (Note that this circle passes through the origin!)

(ii) The required region is shown below as the shaded portion:

5 (i) Expand out the RHS: $(z-2)\left(z^{2}+2 z+4\right)=z^{3}+2 z^{2}+4 z-2 z^{2}-4 z-8$

$$
=z^{3}-8 \quad(\text { as required })
$$

(ii) We can use the quadratic formula to solve the equation $z^{2}+2 z+4=0$:

$$
z=\frac{-2 \pm \sqrt{4-4 \times 1 \times 4}}{2}=\frac{-2 \pm \sqrt{-12}}{2}
$$

These roots can be expressed as:

$$
z=\frac{-2 \pm \sqrt{-1} \times \sqrt{12}}{2}=\frac{-2 \pm 2 \sqrt{3} i}{2}
$$

So the roots are $z=-1+i \sqrt{3}, \quad z=-1-i \sqrt{3}$
(iii) The third root is $z=2$.

The Argand diagram showing the three roots is:

6 (i) If $u_{n}=n^{2}+3 n$, then $u_{n+1}=(n+1)^{2}+3(n+1)=\left(n^{2}+2 n+1\right)+(3 n+3)=n^{2}+5 n+4$.
Therefore,

$$
u_{n+1}-u_{n}=n^{2}+5 n+4-n^{2}-3 n=2 n+4
$$

(ii) Step 1: We need to show that u_{1} is divisible by 2. But $u_{1}=1^{2}+3(1)=4$, which is a multiple of 2 .

Step 2: We now assume that u_{k} is divisible by 2 , i.e. that $u_{k}=2 F(k)$
We need to prove that u_{k+1} is also divisible by 2 .
From part (i), we know that $u_{k+1}=2 k+4+u_{k}$.
This can be expressed as: $u_{k+1}=2(k+2)+2 F(k)=2[k+2+F(k)]$.
This proves that u_{k+1} is divisible by 2 .
So by induction, each term in the sequence is divisible by 2 .
7 (i) For any quadratic equation, $\alpha+\beta=-\frac{b}{a}$ and $\alpha \beta=\frac{c}{a}$.
For the equation $x^{2}+5 x+10=0, \alpha+\beta=-\frac{5}{1}=-5 \quad$ and $\quad \alpha \beta=\frac{10}{1}=10$.
(ii) $\quad(\alpha+\beta)^{2}=\alpha^{2}+2 \alpha \beta+\beta^{2}$.

Therefore, $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=(-5)^{2}-2 \times 10=5$ (as required)
(iii) Sum of roots $=\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{5}{10}=\frac{1}{2}$

Product of the roots $=1$.

So the quadratic equation is:

$$
x^{2}-(\text { sum of roots }) x+(\text { product of roots })=0
$$

This is

$$
\begin{aligned}
& x^{2}-\frac{1}{2} x+1=0 \\
& \text { or } \quad 2 x^{2}-x+2=0
\end{aligned}
$$

8 (i) We can use the fact that $(r+2)!=(r+2)(r+1)$!
Therefore,

$$
\begin{aligned}
(r+2)!-(r+1)! & =(r+2)(r+1)!-(r+1)! \\
& =(r+1)![r+2-1] \\
& =(r+1)!\times(r+1)
\end{aligned}
$$

So, as $(r+1)!=(r+1)(r)$! we get:

$$
(r+2)!-(r+1)!=(r+1)^{2} \times r!
$$

(ii)

$$
\begin{aligned}
2^{2} \times 1!+3^{2} \times 2!+\ldots+(n+1)^{2} & \times n!=\sum_{r=1}^{n}(r+1)^{2} \times r!=\sum_{r=1}^{n}(r+2)!-(r+1)! \\
& =(3!-2!)+(4!-3!)+(5!-4!)+\ldots+[(n+2)!-(n+1)!] \\
& =(n+2)!-2!
\end{aligned}
$$

(iii) The series will not converge as the difference between the terms in the sequence gets larger and larger.

9 (i)

(ii) R is a rotation through 90 degrees in a clockwise direction, centre the origin. The matrix is:

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(iii) S is a stretch in the x direction, scale factor 3. Its matrix is:

$$
\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$

10 (i) To find the inverse of a 3 by 3 matrix, there are several steps:
Step 1: Find the determinant:

$$
\operatorname{Det}(\mathbf{D})=a(1+2)-2(3-0)+0=3 a-6
$$

Step 2: Find the matrix of cofactors:

$$
\left(\begin{array}{ccc}
3 & 3 & -3 \\
2 & a & -a \\
4 & 2 a & a-6
\end{array}\right)
$$

Step 3: Change the signs of every other element:

$$
\left(\begin{array}{ccc}
3 & -3 & -3 \\
-2 & a & a \\
4 & -2 a & a-6
\end{array}\right)
$$

Step 4: Find the transpose:

$$
\left(\begin{array}{ccc}
3 & -2 & 4 \\
-3 & a & -2 a \\
-3 & a & a-6
\end{array}\right)
$$

Step 5: Divide by the determinant to get the inverse:

$$
\mathbf{D}^{-1}=\frac{1}{3 a-6}\left(\begin{array}{ccc}
3 & -2 & 4 \\
-3 & a & -2 a \\
-3 & a & a-6
\end{array}\right)
$$

(ii) The equations can be expressed as:

$$
\mathbf{D}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right) .
$$

Therefore, the solutions are:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\mathbf{D}^{-1}\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)=\frac{1}{3 a-6}\left(\begin{array}{ccc}
3 & -2 & 4 \\
-3 & a & -2 a \\
-3 & a & a-6
\end{array}\right)\left(\begin{array}{l}
3 \\
4 \\
1
\end{array}\right)
$$

So,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{3 a-6}\left(\begin{array}{c}
9-8+4 \\
-9+4 a-2 a \\
-9+4 a+a-6
\end{array}\right)=\frac{1}{3 a-6}\left(\begin{array}{c}
5 \\
2 a-9 \\
5 a-15
\end{array}\right)
$$

