OCR Further Pure Mathematics 1 (FP1) Solutions - June 2006

1 (i)

$$
\begin{aligned}
\mathbf{A}+3 \mathbf{B} & =\left(\begin{array}{ll}
4 & 1 \\
0 & 2
\end{array}\right)+3\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
4 & 1 \\
0 & 2
\end{array}\right)+\left(\begin{array}{cc}
3 & 3 \\
0 & -3
\end{array}\right) \\
& =\left(\begin{array}{cc}
7 & 4 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathbf{A}-\mathbf{B} & =\left(\begin{array}{ll}
4 & 1 \\
0 & 2
\end{array}\right)-\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \\
& =3 \mathbf{I} .
\end{aligned}
$$

So $k=3$.
2 (i) The shear is parallel to the x-axis so points on this axis do not move. Therefore the image of $(1,0)$ is $(1,0)$.

(ii) Recall that the first column of a transformation matrix is the image of the point $(1,0)$ whilst the second column is the image of the point $(0,1)$.
The matrix representing transformation S therefore is $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$

3 (i) The roots of a quadratic equation with real coefficients are complex conjugates of each other. Therefore the second root is $2+3 \mathrm{i}$.
(ii) Method 1: Substitute one of the roots into the quadratic equation.

For example, if we put $x=2-3 \mathrm{i}$, we get:

$$
\begin{aligned}
& (2-3 i)^{2}+p(2-3 i)+q=0 \\
& (2-3 i)(2-3 i)+p(2-3 i)+q=0 \\
& (4-12 i-9)+p(2-3 i)+q=0 \\
& (-5-12 i)+p(2-3 i)+q=0
\end{aligned}
$$

Take the real parts: $-5+2 p+q=0$ i.e. $\quad 2 p+q=5$
Take the imaginary parts: $-12-3 p=0$

$$
\begin{array}{ll}
\text { i.e. } & 3 p=-12 \\
\text { i.e. } & p=-4
\end{array}
$$

\qquad Using the first equation, we therefore get $q=5-2 p=13$

Method 2: We know that the sum of the roots is given by the formula

$$
\alpha+\beta=-\frac{b}{a}
$$

As the roots are $2-3 \mathrm{i}$ and $2+3 \mathrm{i}$ we therefore have:

$$
(2-3 \mathrm{i})+(2+3 \mathrm{i})=-p
$$

This leads to $p=-4$.
The product of the roots is given by the result: $\alpha \beta=\frac{c}{a}$.
Therefore, $(2-3 \mathrm{i})(2+3 \mathrm{i})=q$
This leads to $q=13$.

4
From the formula book, the relevant formulae are:

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{6} n(n+1)(2 n+1) \quad \text { and } \quad \sum_{r=1}^{n} r^{2}=\frac{1}{4} n^{2}(n+1)^{2}
$$

So:

$$
\begin{aligned}
\sum_{r=1}^{n}\left(r^{3}+\right. & \left.r^{2}\right)=\sum_{1}^{n} r^{3}+\sum_{1}^{n} r^{2} \\
& =\frac{1}{6} n(n+1)(2 n+1)+\frac{1}{4} n^{2}(n+1)^{2} \\
& =\frac{2}{12} n(n+1)(2 n+1)+\frac{3}{12} n^{2}(n+1)^{2} \\
& =\frac{1}{12} n(n+1)[2(2 n+1)+3 n(n+1)] \\
& =\frac{1}{12} n(n+1)\left[4 n+2+3 n^{2}+3 n\right] \\
& =\frac{1}{12} n(n+1)\left[3 n^{2}+7 n+2\right] \\
& =\frac{1}{12} n(n+1)(n+2)(3 n+1)
\end{aligned}
$$

$$
=\frac{2}{12} n(n+1)(2 n+1)+\frac{3}{12} n^{2}(n+1)^{2} \quad \text { (changing to common denom.) }
$$

as required.

5(i) $2 z-3 w=2(3-2 i)-3(2+i)=6-4 i-6-3 i=-7 i$
(ii)

$$
i z=i(3-2 i)=3 i+2 \quad\left(\text { as } \quad i^{2}=-1\right)
$$

Therefore

$$
\begin{aligned}
(i z)^{2}= & (2+3 i)^{2}=(2+3 i)(2+3 i) \\
& =4+12 i-9 \\
& =-5+12 i
\end{aligned}
$$

(iii)

$$
\begin{aligned}
&\left.\frac{z}{w}=\frac{3-2 i}{2+i}=\frac{3-2 i}{2+i} \times \frac{2-i}{2-i} \quad \text { (multiply top and bottom by complex conjugate of } \mathrm{w}\right) \\
&=\frac{6-3 i-4 i-2}{4-2 i+2 i+1} \\
&=\frac{4-7 i}{5} \\
&=\frac{4}{5}-\frac{7}{5} i
\end{aligned}
$$

6 (i)

(ii) We can use SOHCAHTOA to find the coordinates of intersection:

$$
\begin{aligned}
& x=2 \cos \frac{\pi}{3}=1 \\
& y=2 \sin \frac{\pi}{3}=2 \times \frac{\sqrt{3}}{2}=\sqrt{3}
\end{aligned}
$$

Therefore the intersection is $1+\sqrt{3} i$
7 (i) $\quad \mathbf{A}^{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$
$\mathbf{A}^{3}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}8 & 0 \\ 0 & 1\end{array}\right)$
(ii) These results suggest that $\mathbf{A}^{n}=\left(\begin{array}{cc}2^{n} & 0 \\ 0 & 1\end{array}\right)$
(iii) The result is clearly true when $n=1$ as $\mathbf{A}=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.

Assume the result is true when $n=k$, i.e. $\mathbf{A}^{k}=\left(\begin{array}{cc}2^{k} & 0 \\ 0 & 1\end{array}\right)$
We need to prove the result is true when $n=k+1$, i.e that $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)^{k+1}=\left(\begin{array}{cc}2^{k+1} & 0 \\ 0 & 1\end{array}\right)$.
Starting from the left hand side:

$$
\begin{aligned}
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{k+1} & =\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)^{k}\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \quad \text { as we are assuming result true when } n=k \\
& =\left(\begin{array}{cc}
2^{k} \times 2 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2^{k+1} & 0 \\
0 & 1
\end{array}\right) \quad \text { as required. }
\end{aligned}
$$

Therefore the result is true for $n=k+1$.
Therefore by induction the result is true for all positive integers n.

8 (i)
The determinant of a general 3 by 3 matrix $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|$ is:

$$
a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

So here

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
a & 4 & 2 \\
1 & a & 0 \\
1 & 2 & 1
\end{array}\right) & =a\left|\begin{array}{ll}
a & 0 \\
2 & 1
\end{array}\right|-4\left|\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right|+2\left|\begin{array}{cc}
1 & a \\
1 & 2
\end{array}\right| \\
& =a(a-0)-4(1-0)+2(2-a) \\
& =a^{2}-4+4-2 a \\
& =a^{2}-2 a
\end{aligned}
$$

(ii) As matrix is singular if it has zero determinant.

So here \mathbf{M} is singular if $a^{2}-2 a=0$
i.e. if $a(a-2)=0$
i.e. if $a=0$ or $a=2$.
(iii)

The equations can be written as $\mathbf{M}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 a \\ 1 \\ 3\end{array}\right)$.
a) If $a=3$, the matrix \mathbf{M} can be inverted. So the equations will have a unique solution.
b) If $a=2$, the matrix \mathbf{M} is singular. So either there are no solutions or there are an infinite number of solutions.
To decide which situation we are in, we need to try to solve the equations:

$$
\begin{align*}
2 x+4 y+2 z & =6 \tag{1}\\
x+2 y & =1 \tag{2}\\
x+2 y+z & =3 \tag{3}
\end{align*}
$$

Notice that equation 1 is double equation 3 .
So we really only have 2 independent equations.
There is therefore an infinite number of equations.

9 (i) $\sum_{r=1}^{n}\left\{(r+1)^{3}-r^{3}\right\}=\underbrace{\left(\not 2^{3}-1^{3}\right)}_{r=1}+\underbrace{\left(\not \mathfrak{p}^{3}-\not 2^{3}\right)}_{r=2}+\underbrace{\left(\not A^{3}-\not \mathfrak{Z}^{3}\right)}_{r=3}+\ldots+\underbrace{(\not h^{3}-\underbrace{\left.(n-1)^{3}\right)}}_{r=n-1}+\underbrace{\left((n+1)^{3}-\not h^{3}\right)}_{r=n}$ $=(n+1)^{3}-1$
(ii) $\quad(r+1)^{3}=\left(r^{2}+2 r+1\right)(r+1)=r^{3}+3 r^{2}+3 r+1$

Therefore $(r+1)^{3}-r^{3}=3 r^{2}+3 r+1$.
(iii)

$$
\begin{aligned}
\sum_{r=1}^{n}\left\{(r+1)^{3}-r^{3}\right\} & =\sum_{r=1}^{n}\left(3 r^{2}+3 r+1\right)=3 \sum_{r=1}^{n} r^{2}+3 \sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \\
& =3 \sum_{r=1}^{n} r^{2}+3 \times \frac{1}{2} n(n+1)+n
\end{aligned}
$$

Using part (i), we therefore have:

$$
3 \sum_{r=1}^{n} r^{2}+\frac{3}{2} n(n+1)+n=(n+1)^{3}-1
$$

Therefore:

$$
\begin{aligned}
3 \sum_{r=1}^{n} r^{2} & =(n+1)^{3}-1-\frac{3}{2} n(n+1)-n \\
& =\left(n^{3}+3 n^{2}+3 n+1\right)-1-\frac{3}{2} n^{2}-\frac{3}{2} n-n \\
& =n^{3}+\frac{3}{2} n^{2}+\frac{1}{2} n \\
& =\frac{1}{2} n\left(2 n^{2}+3 n+1\right) \\
& =\frac{1}{2} n(n+1)(2 n+1)
\end{aligned}
$$

So

$$
3 \sum^{n} r^{2}=\frac{1}{2} n(n+1)(2 n+1) \quad \text { as required }
$$

$10 \quad x^{3}-2 x^{2}+3 x+4=0$ has roots α, β, γ
(i)
$\alpha+\beta+\gamma=-\frac{b}{a}=2$
$\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=3$
$\alpha \beta \gamma=-\frac{d}{a}=-4$
(ii) Let $u=\alpha+1$
(iii) As α is a root, $(\alpha)^{3}-2 \alpha^{2}+3 \alpha+4=0$

Replace α by $u-1$:

$$
\begin{array}{ll}
& (u-1)^{3}-2(u-1)^{2}+3(u-1)+4=0 \\
& \left(u^{3}-3 u^{2}+3 u-1\right)-2\left(u^{2}-2 u+1\right)+3 u-3+4=0 \\
\text { i.e. } \quad u^{3}-5 u^{2}+10 u-2=0
\end{array}
$$

Therefore, the equation is:

$$
x^{3}-5 x^{2}+10 x-2=0
$$

So $p=-5$ and $q=-2$.

