OCR Further Pure Mathematics 1 Solutions - June 2007

1
From the diagram:

$$
\begin{aligned}
& x=4 \cos \frac{\pi}{3}=2 \\
& y=4 \sin \frac{\pi}{3}=2 \sqrt{3}
\end{aligned}
$$

2

$$
\sum_{r=1}^{n} r^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

Step 1: Prove true when $n=1$:

$$
\begin{aligned}
& \text { LHS }=1^{3}=1 \\
& \text { RHS }=\frac{1}{4} \times 1^{2} \times 2^{2}=1
\end{aligned}
$$

Therefore the result is true for $n=1$.
Step 2: Assume the result is true for $n=k$, i.e. that $\sum_{r=1}^{k} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}$.
We need to prove the result is true for $n=k+1$, i.e. that $\sum_{r=1}^{k+1} r^{3}=\frac{1}{4}(k+1)^{2}(k+2)^{2}$.

$$
\begin{array}{rlr}
\text { LHS }= & \sum_{r=1}^{k+1} r^{3}=\sum_{r=1}^{k} r^{3}+(k+1)^{3} & \\
& =\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} & \\
& =\frac{1}{4} k^{2}(k+1)^{2}+\frac{4}{4}(k+1)^{3} & \\
& \text { (by inductive assumption) } \\
& =\frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right] & \\
& =\frac{1}{4}(k+1)^{2}(k+2)^{2} & \\
& =\text { RHS } &
\end{array}
$$

So the result is true when $n=k+1$.
Therefore, by induction, the result is true for all positive integers n .

The standard results are:

$$
\begin{aligned}
& \sum_{r=1}^{n} r=\frac{1}{2} n(n+1) \quad \text { (Learn this - not in formula book) } \\
& \sum_{\mathrm{r}=1}^{\mathrm{n}} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \quad \text { (In formula book) }
\end{aligned}
$$

So, using these, we get:

$$
\begin{aligned}
\sum_{r=1}^{n}\left(3 r^{2}-3 r+1\right) & =3 \sum_{r=1}^{n} r^{2}-3 \sum_{r=1}^{n} r+\sum_{r=1}^{n} 1 \\
& =3 \times \frac{1}{6} n(n+1)(2 n+1)-3 \times \frac{1}{2} n(n+1)+n \\
& =\frac{1}{2} n(n+1)(2 n+1)-\frac{3}{2} n(n+1)+\frac{2}{2} n
\end{aligned}
$$

Taking out the common factor we get:

$$
\begin{aligned}
\sum_{r=1}^{n}\left(3 r^{2}-3 r+1\right) & =\frac{1}{2} n[(n+1)(2 n+1)-3(n+1)+2] \\
& =\frac{1}{2} n\left[2 n^{2}+3 n+1-3 n-3+2\right] \\
& =\frac{1}{2} n\left[2 n^{2}\right] \\
& =n^{3}
\end{aligned}
$$

4 (i)

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
3 & 5
\end{array}\right) \Rightarrow \operatorname{det}(\mathbf{A})=1 \times 5-1 \times 3=2
$$

So, $\quad \mathbf{A}^{-1}=\frac{1}{2}\left(\begin{array}{cc}5 & -1 \\ -3 & 1\end{array}\right)$
(ii) The simplest way to work out $(\mathbf{A B})^{-1}$ is to use this useful result:

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}
$$

Applying this here, we get:

$$
\begin{aligned}
(\mathbf{A B})^{-1} & =\left(\begin{array}{cc}
1 & 1 \\
4 & -1
\end{array}\right)^{\frac{1}{2}}\left(\begin{array}{cc}
5 & -1 \\
-3 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
4 & -1
\end{array}\right)\left(\begin{array}{cc}
5 & -1 \\
-3 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
2 & 0 \\
23 & -5
\end{array}\right)
\end{aligned}
$$

5 (i) $\frac{1}{r}-\frac{1}{r+1}=\frac{r+1}{r(r+1)}-\frac{r}{r(r+1)}=\frac{1}{r(r+1)} \quad$ (as required)
(ii)

$$
\begin{aligned}
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots+\frac{1}{n(n+1)} & =\sum_{r=1}^{n} \frac{1}{r(r+1)} \\
& =\sum_{r=1}^{n}\left(\frac{1}{r}-\frac{1}{r+1}\right) \quad(\text { from (i)) } \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}
\end{aligned}
$$

(iii)
$\sum_{r=1}^{\infty} \frac{1}{r(r+1)}=1 \quad$ (from part (ii))
So,

$$
\begin{aligned}
\sum_{r=n+1}^{\infty} \frac{1}{r(r+1)} & =\sum_{r=1}^{\infty} \frac{1}{r(r+1)}-\sum_{r=1}^{n} \frac{1}{r(r+1)} \\
& =1-\left(1-\frac{1}{n+1}\right) \\
& =\frac{1}{n+1}
\end{aligned}
$$

6 (i) $\quad 3 x^{3}-9 x^{2}+6 x+2=0$
a) Sum of roots: $\alpha+\beta+\gamma=-\frac{b}{a}=-\frac{-9}{3}=3$

Sum of pairs of products: $\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=\frac{6}{3}=2$
b) $(\alpha+\beta+\gamma)^{2}=(\alpha+\beta+\gamma)(\alpha+\beta+\gamma)=\alpha^{2}+\beta^{2}+\gamma^{2}+2 \alpha \beta+2 \alpha \gamma+2 \beta \gamma$

Therefore,

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2 \alpha \beta-2 \alpha \gamma-2 \beta \gamma \\
& =3^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\
& =3^{2}-2(2) \\
& =5
\end{aligned}
$$

(ii) a) Replacing x by $\frac{1}{u}$ in the original cubic equation results in

$$
3\left(\frac{1}{u}\right)^{3}-9\left(\frac{1}{u}\right)^{2}+6\left(\frac{1}{u}\right)+2=0
$$

Multiplying by u^{3}, gives

$$
\begin{array}{ll}
& 3-9 u+6 u^{2}+2 u^{3}=0 \\
\text { or } & 2 u^{3}+6 u^{2}-9 u+3=0
\end{array}
$$

b) The roots of this new equation will be $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$.

Therefore $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ represents the sum of the roots, i.e. $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{-6}{2}=-3$
7 (i)
The determinant of the 3 by 3 matrix $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ is $a\left|\begin{array}{ll}e & f \\ h & i\end{array}\right|-b\left|\begin{array}{ll}d & f \\ g & i\end{array}\right|+c\left|\begin{array}{ll}d & e \\ g & h\end{array}\right|$.
So the determinant of $\mathbf{M}=\left(\begin{array}{lll}a & 4 & 0 \\ 0 & a & 4 \\ 2 & 3 & 1\end{array}\right)$ is

$$
\begin{aligned}
\operatorname{det}(\mathbf{M}) & =a\left|\begin{array}{ll}
a & 4 \\
3 & 1
\end{array}\right|-4\left|\begin{array}{ll}
0 & 4 \\
2 & 1
\end{array}\right|+0\left|\begin{array}{ll}
0 & a \\
2 & 3
\end{array}\right| \\
& =a(a-12)-4(0-8)+0 \\
& =a^{2}-12 a+32
\end{aligned}
$$

(ii) If $a=2, \operatorname{det}(\mathbf{M})=2^{2}-12(2)+32 \neq 0$, so \mathbf{M} is not singular.
(iii) If $a=4, \operatorname{det}(\mathbf{M})=4^{2}-12(4)+32=0$, so \mathbf{M} is singular.

The equations are:

$$
\begin{aligned}
4 x+4 y & =6 \\
4 y+4 z & =8 \\
2 x+3 y+\quad z & =1
\end{aligned}
$$

These equations simplify to

$$
\begin{array}{r}
2 x+2 y \quad=3 \\
y+z=2 \\
2 x+3 y+z=1
\end{array}
$$

Eliminate z from the second and third equations by subtracting:

$$
2 x+2 y=-1
$$

The first equation was $2 x+2 y=3$.
The equations are therefore inconsistent and so have no solutions.

8 (i) $\quad|z-3|=3$ represents a circle centre (3,0) radius 3 .
$\arg (z-1)=\pi / 4$ is a half-line starting at the point $(1,0)$ making an angle of $\pi / 4$ with the horizontal.

The Argand diagram therefore is:

(ii) The required region is shaded on this diagram:

9 (i) The matrix for an enlargement centre $(0,0)$ scale factor $\sqrt{ } 2$ is

$$
\mathbf{A}=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right)
$$

(ii) The matrix that represents a rotation through an angle of θ degrees anticlockwise is

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Here the matrix is $\left(\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right)$.
Comparing the bottom left hand corner: $\sin \theta=-\frac{\sqrt{2}}{2}$
Using a calculator, the solution to this is $\theta=-45^{\circ}$.
So the matrix represents a rotation 45 degrees anticlockwise centre $(0,0)$.
(iii)

$$
\mathbf{C}=\mathbf{A} \mathbf{B}=\left(\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

(iv)

$(1,0)$ is mapped to $(1,-1)$
$(0,1)$ is mapped to $(1,1)$
(v) $\operatorname{Det}(\mathbf{C})=1-(-1)=2$

This shows that when a shape is enlarged by a transformation represented by the matrix \mathbf{C}, the area of the image is twice the area of the object.

10 (i) Let $a+b i$ be a square root of $16+30$ i.
Then $(a+b i)^{2}=16+30 i$
So, $a^{2}+2 a b i-b^{2}=16+30 i \quad$ (using $\mathrm{i}^{2}=-1$).
Comparing the imaginary parts, we have $2 a b=30$, i.e. $a b=15$.
Comparing the real parts, we have $a^{2}-b^{2}=16$.
As $b=15 / a$, we can write this as: $a^{2}-\frac{225}{a^{2}}=16$
Multiplying through by a^{2} gives: $a^{4}-225=16 a^{2}$ or $a^{4}-16 a^{2}-225=0$.
This factorises: $\left(a^{2}-25\right)\left(a^{2}+9\right)=0$
The solutions of this are $\quad a^{2}=25$ i.e. $a= \pm 5$
or $\quad a^{2}=-9 \quad$ (this has no real solutions)

If $a=5$, then $b=15 / 5=3$
If $a=-5$, then $b=15 /-5=-3$.
So the square roots are $5+3 \mathrm{i}$ and $-5-3 \mathrm{i}$.
(ii) Using the quadratic formula, the solutions to the equation $z^{2}-2 z-(15+30 i)=0$ are

$$
\begin{aligned}
& z=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)(15+30 i)}}{2} \\
& z=\frac{2 \pm \sqrt{4+60+120 i}}{2} \\
& z=\frac{2 \pm \sqrt{64+120 i}}{2} \\
& z=\frac{2 \pm \sqrt{4} \sqrt{16+30 i}}{2} \\
& z=\frac{2 \pm 2 \sqrt{16+30 i}}{2} \\
& z=1 \pm \sqrt{16+30 i}
\end{aligned}
$$

Using the answer from (i) for the square root of $16+30$ i, we see that the solutions to the quadratic equation are;

$$
z=1+5+3 i=6+3 i \quad \text { or } \quad z=1-(5+3 i)=-4-3 i
$$

