Further Pure 1
Revision Topic 3:  Proof by induction
The OCR syllabus says that candidates should be able to:

(a) use the method of mathematical induction to establish a given result (not restricted to

summation of series);

(b) recognise situations where conjecture based on a limited trial followed by inductive proof is a

useful strategy, and carry this out in simple cases, e.g. to find the nth power of the matrix 
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Section 1: General principals
There are two steps involved in proving a result by induction:
Step 1:  Prove true when n = 1.

Step 2:  (The inductive step).  Assume the result is true for n= k and then prove true for n = k + 1.

1.1 Summing series

Example: Prove by induction that 
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 for all positive integer values of n.

Solution:  We wish to show that 
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Step 1:  This is to prove the result true when n = 1:


Left hand side of equation (*) = 12 = 1.


Right hand side of equation (*) = 
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So equation (*) is true when n = 1.

Step 2:  We assume the result is true when n = k, i.e. we assume that 


[image: image5.wmf]2222

6

123...(1)(21)

k

kkk

++++=++


We want to prove the result is true when n = k + 1, i.e. we wish to show that 
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i.e.
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But 
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(using our assumption).

So, 
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Therefore, 
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Factorising we get:  
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  as required.

Therefore the result is true for n = k + 1.

So, by induction, the result is true for all integers n ≥ 1.

Examination style question

Prove by induction that 
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 for all positive integer values of n.

Worked examination question (AQA January 2006)

  a)  Prove by induction that
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(*)
for all integers n ≥ 1.

  b)  Show that
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Solution:

Step 1:  This is to prove the result true when n = 1:


Left hand side of equation (*) = 
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Right hand side of equation (*) = 1 × 21 = 2.

So equation (*) is true when n = 1.

Step 2:  We assume the result is true when n = k, i.e. we assume that 
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We want to prove the result true when n = k + 1, i.e. we want to show that
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i.e. that
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But,  
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  (using the assumption)
So
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i.e.
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i.e.
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So we have
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  as required.

Therefore the equation is true when n = k + 1.

So the equation is true for all integer values n ≥ 1.

b)
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Using the result from part (a), we know that 
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and 
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Therefore, 
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Factorising gives:
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  as required.

Examination question (OCR January 2005)

Prove by induction that
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for all integers n ≥ 1.
Examination question (Edexcel)
Prove, by induction, that
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1.2 Sequences

Example:  Prove that if 
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Solution:  
Step 1:  We prove the formula true when n = 1:  
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 (which is true).

Step 2:  Assume the formula is true when n = k, i.e. that 
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We need to prove the result true when n = k + 1, i.e. that 
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But,  
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  (using the assumption).

So,  
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  as required.

Therefore the formula is true when n = k + 1.

Therefore the result is true for all integers n ≥ 1.
Examination question (AQA June 2005)

The sequence 
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Prove by induction that, for all n ≥ 1, 
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Worked examination question (Edexcel 2005)

(a)
Express 
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(1)


The sequence of real numbers u1, u2, u3, ... is such that u1 = 5.2 and un + 1 = 
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(b)
Prove by induction that un > 5, for n (ℤ+.

 (4)

Solution:

a)  Note that
p + 
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Writing
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, we must have 6x + 10 = p(x + 3) + q.
So

6 = p

(comparing coefficients of x)
and

10 = 3p + q
i.e.
10 = 18 + q
i.e. q = -8.

Therefore 
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b) un + 1 = 
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Step 1:  Prove the result true when n = 1, i.e. that u1 > 5.  This is trivially true as u1 = 5.2.

Step 2:  Assume true when n = k, i.e. that uk > 5.

We then need to prove the result true when n = k + 1, i.e. that  uk+1 > 5.

As uk > 5, then uk + 3 > 8 and so 
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Therefore


un + 1 = 
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(as required)

So the result is true when n = k + 1.

Therefore the result is true for n (ℤ+.
Examination question (NICCEA)

Consider the sequence defined by the relationship 
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(i)  
Show that the first four terms are 1,  7,  37,  187, …

(ii)
Use the method of induction to prove that 
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1.3 Divisibility

Some questions give you a formula that defines a sequence (in the form un = f(n) ) and then ask you to prove that all terms of the sequence are divisible by a particular number.

These questions are usually tackled by simplifying f(k + 1) – f(k)  OR  f(k + 1) – f(k).

Adapted past examination question (adapted MEI):  

Let f(n) = 
[image: image59.wmf]41

23

n

+

+

.  By considering f(n + 1) – f(n), or otherwise, prove that 
[image: image60.wmf]41

23

n

+

+

 is a multiple of 5 for any positive integer n.

Solution:  Let f(n) = 
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Step 1:  Prove f(1) is a multiple of 5.  But f(1) = 
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Step 2:  We assume f(k) is a multiple of 5.  We want to prove that f(k + 1) is a multiple of 5.
First we try to simplify:


f(n + 1) - f(n) = 
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Therefore:

f(k + 1) – f(k) = 
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So, 
f(k + 1) = 
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So, f(k + 1) is a multiple of 5.
Therefore by induction, f(n) must be a multiple of 5 for all positive integers n.

Worked Examination Question: Edexcel 2002

For n ( ℤ+ prove that 


23n + 2 + 5n + 1 is divisible by 3,

Solution:

Let


f(n) = 23n + 2 + 5n + 1
If we here calculate,  f(n + 1) + f(n) = 23(n+ 1) + 2 + 5n+ 1 + 1 + (23n + 2 + 5n + 1)



          = 23n + 5 + 5n + 2 + 23n + 2 + 5n + 1



          = 23n + 5 + 23n + 2 + 5n + 2  + 5n + 1 



          = 23n+2(23 + 1) + 5n+1(5 + 1)




          = 9 × 23n+2 + 6 × 5n+1
Now we are ready to prove the result.
Step 1:  First prove true when n = 1:  



23 + 2 + 51 + 1 = 32 + 25 = 57
(which is divisible by 3).
Step 2:  Assume that the result is true when n = k, i.e. that f(k) is divisible by 3.

We showed above that
f(k + 1) + f(k) = 9 × 23k+2 + 6 × 5k+1
i.e. that



f(k + 1) = 9 × 23k+2 + 6 × 5k+1 –  f(k)


So f(k + 1) must be divisible by 3 (as required).

Therefore the result is true for n ( ℤ+
Past examination question (AQA January 2004)

The function f is given by  
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a)  
Simplify, as far as possible, f(n + 1) – f(n).

b)  
Prove by induction that the sum of the cubes of three consecutive positive integers is divisible by 9.

Past examination question (Edexcel 2003)


f(n) =  (2n + 1)7n – 1.

Prove by induction that, for all positive integers n, f(n) is divisible by 4.
Past examination question (Edexcel)
f(n) = 
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a)  Write down f(n + 1) – f(n).

b)  Prove by induction that f(n) is divisible by 5.

1.4 Matrix results

Example:  

a) Find the matrices 
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b) Predict the value of 
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Solution

a)
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b)
It seems sensible to predict that
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We know the result is true when n = 1, 2 and 3.

Suppose now that it is true when n = k, i.e. that 
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We need to prove the result true when n = k + 1, i.e. that  
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  (by assumption)
Therefore:
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  (as required).

So the result is true for n = k + 1.

Therefore our prediction is true for all positive integer values of n.

Past examination question (MEI adapted)

You are given the matrix 
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(i)  
Calculate 
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(ii)
Prove by induction that 
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 when n is a positive integer.

Past examination question (Edexcel 2002)
Prove that
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when n is a positive integer.
Past examination question
Let 
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Use induction to prove that, for all positive integers n, 
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1.5 Other examination questions

Past examination question (OCR 2004)
(i)   Show that 
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(ii)  Using this result, prove by induction that (x – y) is a factor of 
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 for all integers n ≥ 1.
Past examination question (OCR)
Prove by mathematical induction that, for all positive integers n,
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Divisible by 3





Divisible by 3





Divisible by 3 (by assumption)





Multiple of 5





Assumed to be a multiple of 5
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