Further Pure 1
Revision Topic 4:  Roots of Quadratic and Cubic Equations
The OCR syllabus says that candidates should:

(a) use the relations between the symmetric functions of the roots of polynomial equations and the

coefficients (for equations of degree 2 or 3 only);
(b) use a given simple substitution to obtain an equation whose roots are related in a simple way to

those of the original equation.

Section 1:  Quadratic Equations

Consider the quadratic equation 
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It is possible to show that

*  the sum of the roots is 
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*  the product of the roots is 
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Example:  Suppose that in the equation, 
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, the roots are called ( and (.  Then
· the sum of the roots is 
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· the product of the roots is 
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It is also possible to calculate the values of other quantities involving the roots, such as:
· 
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:  this can be found using the result that  
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Therefore, 
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So:  
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Note:  Functions such as 
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 are called symmetric functions.  This is because if you swap ( and ( over, the function remains the same.
Section 1.1
Forming new quadratic equations

Most questions ask you to find a new equation whose roots are related to the roots of an initial equation.

One way to do this is to use the fact that any quadratic equation can be written as:
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Worked examination question: (AQA 2003)

The roots of the quadratic equation 
[image: image17.wmf]0

2

3

2

=

-

+

x

x

 are α and β.

a)  Write down the values of α + β and αβ.

b)  Without solving the equation, find the value of


(i)
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(ii)
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c)  Determine a quadratic equation with integer coefficients which has roots
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Solution:

a)  In the quadratic equation 
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a = 1



b = 3



c = -2

So:
the sum of the roots is 
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the product of the roots is 
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b)  (i)
Notice that 
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But 
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(this is a very frequently used result in this topic – make sure that you are familiar with it!)

So,
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Also,
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Therefore,
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(ii)  Expanding out the brackets, we get: 
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But, we already know that 
[image: image32.wmf]2

-

=

ab

 and  
[image: image33.wmf]4

2

2

=

b

a

.

Notice that 
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So,
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c)  If the new roots are 
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*  the sum of the new roots is:
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= -12.75.

*  the product of the new roots is
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Therefore the required quadratic equation is:
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i.e.



[image: image45.wmf]0

-4.25)

(

-12.75)

(

2

=

+

-

x

x

.

Multiplying by 4 to get integer coefficients, we get:
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Worked examination question (AQA 2003)

The roots of the quadratic equation 
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a)  Without solving the equation:


(i) 
Show that 
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(ii)
Find the value of 
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b)  
(i)
Show that 
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(ii)
Hence find the value of 
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c)  Determine a quadratic equation with integer coefficients which has roots 
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Solution:

a)  
The sum of the roots is:  α + β = -b/a = 3


The product of the roots is αβ = 1.


(i)
So,  
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(ii)
Notice that 
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Therefore:  
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So  
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b)  
(i)    
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   (as required)


(ii)   So,  
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c)  Consider now the new roots 
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The sum of these new roots is:
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The product of these new roots is:
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     = 13 – 47 + 1 = -45.

Therefore the quadratic equation is:
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Examination question 1 (AQA 2002)

a)  The roots of the quadratic equation 
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 are α and β.

Without solving the equation, find the value of:


(i)
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(ii)
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b)  Determine a quadratic equation with integer coefficients which has roots:
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Examination question 2 (AQA 2004)
a)  The quadratic equation 
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Write down the numerical values of:


(i)
αβ


(ii)
α + β

b)  Another quadratic equation has roots 
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(ii)
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c)  Hence or otherwise find the quadratic equation with roots 
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Worked examination question (AQA 2004)

The roots of the quadratic equation 
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a)  Write down the value of α + β and the value of αβ, in terms of p.

b)  Find the value of 
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c)  
(i)  
Show that 
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(ii)
Given that α and β differ by 5, find the possible values of p.

a)  
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Therefore, 
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c)
(i)
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  (as required)


(ii)
If α and β differ by 5, then α – β = 5 or -5.



So:
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We therefore get the equation:
25 
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i.e.  
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so   (p + 4)(p + 6) = 0



so  p = -4  or  p = -6.

Examination question (AQA 2003)

The quadratic equation 
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 has roots α and β.

a)  Write down the value of αβ.

b)  Express in terms of p:


(i)  
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(ii)  
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c)  Given that 
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= 5, find the possible values of p.
Examination question (AQA June 2005)
The equation 
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(a)  
(i)
Write down the values of ( + (  and  ((.


(ii)
Deduce that 
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(iii)
Explain why the statement 
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 implies that ( and ( cannot both be real.

(b)
Find in the form p + iq the values of:


(i)
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(c)
Hence find a quadratic equation with roots 
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Examination question  (Jan 2005 AQA)

The equation 
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 has roots ( and (.

(a)  Write down the values of ( + ( and ((.

(b)  Find the value of 
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(c)  Find a quadratic equation which has roots 
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1.2
Related roots

Consider the quadratic equation 
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Then both ( and ( must satisfy the quadratic equation and so in particular  
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To form a quadratic equation which has roots 3( and 3(, we could let u = 3(.
Then 
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Note:  We could have formed this new quadratic equation using the substitution u = 3x in the original quadratic equation.

Worked examination question
The roots of the quadratic equation
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are α and β.  Form a quadratic equation whose roots are α + 1 and β + 1, giving your answer in the form 
[image: image113.wmf]0

2

=

+

+

q

px

x

, where p and q are integers to be determined.

Solution:  As ( is a root of the quadratic equation, we have 
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Let u = ( + 1.  Then, ( = u – 1.

Substituting this into equation ( gives:
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So  p = -7  and q = 9.

1.3 Use given substitutions to solve equations

Worked examination question (OCR January 2005)

(i)  Show that the substitution x = y + 1 transforms the equation 
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(ii)  Hence find the exact roots of 
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Solution:

(i)  Substituting x = y + 1 into 
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This simplifies to give
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(ii)  The equation 
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 is a quadratic equation in y2.

It can be factorised:
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As x = y + 1, the exact roots of the original equation are 
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Examination question (June 2004 AQA)
The roots of the cubic equation 
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a)  Use the substitution x = y – 3 to show that the cubic equation which has roots 
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b)
(i)  Find the three roots of 
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(ii) Hence or otherwise find the roots of the equation 
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Section 2:  Roots of Cubic Equations

Consider the cubic equation 
[image: image141.wmf]32

0

axbxcxd

+++=

.  Suppose that its roots are denoted α, β and γ.

It is possible to show that

*  the sum of the roots is 
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(
*  the sum of pairs of products of roots is  
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*  the product of all 3 roots is 
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Note:  Result ( is sometimes abbreviated to 
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 is used to abbreviate the sum of the roots.  Likewise result ( above is sometimes abbreviated to 
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 is the widely accepted shorthand for 
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Worked examination question (AQA January 2006)

The cubic equation 
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, where p, q and r are real, has roots (, ( and γ.

(a)  Given that 
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find the values of p and q.

(b)  Given further that one root is 3 + i, find the value of r.

Solution:

a)  The sum of the roots is given by the formula 
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.

So here we have:    
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,  i.e.  p = -4.

Also,  
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Therefore,
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So
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Hence
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Using the formula 
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, we therefore get:



[image: image159.wmf]2

1

q

-=


i.e.
q = -1.

b)  If one of the roots is 3 + i, then, since the coefficients of the equation are real, a second root must be its complex conjugate 3 – i.

The sum of all 3 roots is 4, so
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So
γ = -2.

So the product of all 3 roots is 
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   (as i2 = -1).

But, since 
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, we must have 
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Examination question (OCR June 2004)
(i)
Given that (, ( and γ are roots of the equation 
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, write down the values of 
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(ii)
Hence find the values of 


a)
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(Hint:  begin by expanding 
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b)
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(Hint: begin by expanding 
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c)
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(Hint: begin by expanding 
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Worked examination question (June 2005 AQA):
The cubic equation
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has roots (, ( and γ.

a)  Write down the value of ( + ( + γ.

b)
(i)
Explain why 
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(ii)
Hence or otherwise show that 
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c)  Given that ( = -3 + 4i, write down the other non-real root ( and find the third real root γ.

d)  Show that 
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Solution:

a)
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.   Here b = 0, so 
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b)
(i)
( is a root of the equation 
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, i.e. 
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(ii)  As ( and γ are also roots, then 
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Therefore 
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This gives 
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  (since 
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c)  
As the cubic equation has real roots, the complex conjugate of -3 + 4i must also be a root.  So ( = -3 – 4i.

To find the third root, we can use 
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,

i.e. 
γ = 6.

d)
Substituting into 
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, we get  
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But,  
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Rearranging this gives:
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Examination question (AQA January 2005)

The cubic equation 
[image: image196.wmf]32
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, where p and q are real, has a root ( = 1 + 2i.

a)  Write down the other non-real root, (, of the equation.

b)  Find:


(i)

[image: image197.wmf]ab

;


(ii)
the third root, γ, of the equation.

c)  Hence, or otherwise, find the values of p and q.

If we are given the values of a) the sums of the roots, b) the sum of pairs of products and c) the product of all the roots, then we can form the corresponding cubic equation:
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Examination question (OCR January 2005):

It is given that
(,( and γ are three numbers such that

[image: image199.wmf]222
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Find

(i)

[image: image200.wmf]abagbg
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,

(ii)
a cubic equation with roots (,( and γ;

(iii)
exact values for (,( and γ.
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