Further Pure 3: Differential Equations
Past Examination Questions

	1 (i)
	Show that by using the substitution 
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may be written in the form
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	(ii)
	Find the general solution of
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and hence find the general solution of
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	2.
	The movement of the needle on an instrument used for measuring the strength of an electrical current can be modelled by the differential equation

[image: image6.wmf]2

2

450

dd

dtdt

qq

q

++=

,

where θ represents the angle turned through from a standard position and t represents time.
	

	(i)
	Find the general solution of the differential equation.
	[3]

	(ii)
	Initially the needle is at rest in a position corresponding to 
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 in terms of t.
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	[Hint: If the needle is initially at rest, this means that 
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	3. (i)
	Find the general solution of the differential equation
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	(ii)
	Find the particular solution representing a curve which has tangent y = x at the point (0, 0).
	[6]

	
	[Hint:  This means that y = 0 when x = 0  AND  
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	4 (i)
	Find the values of the constants λ and μ such that 
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 is a particular integral of the differential equation
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	(ii)
	Find the particular solution of the differential equation 


[image: image14.wmf]2

2

9sin3

dy

yx

dx

+=


which has a stationary value at the point 
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	5 (i)
	Show that an integrating factor of the differential equation
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is 
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	(ii)
	Hence solve the differential equation, given that y = 1 when x = 0, giving your answer in the form y = f(x).
	[5]
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	6 
	Find the general solution of the differential equation


[image: image18.wmf]3

x

dy

ye

dx

-=

,
giving your answer in the form y = f(x).
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	7.
	It is given that y satisfies the differential equation

[image: image19.wmf]2

2

5481010cos2

dydy

yxx

dxdx

-+=--

.
	

	
	a)  Show that 
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 is a particular integral of the given differential equation.
	[3]

	
	b)  Find the general solution of the differential equation.
	[4]

	
	c)  Hence express y in terms of x, given that y = 2 and 
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 = 0 when x = 0.
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	8.
	a)  Show that sinx is an integrating factor for the differential equation
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	b)  Solve this differential equation, given that y = 2 when 
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	9.
	a)  Find the roots of the equation 
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	[2]

	
	b)
(i)   Find the general solution of the differential equation
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(ii)  Hence express y in terms of x, given that y = 1 and 
[image: image26.wmf]dy

dx

 = 2 when x = 0.
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	10.
	a)  Show that 
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	b)  By differentiating 
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 implicitly, where y is a function of x and c is a constant, show that 
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 is a solution of the differential equation
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	c)  Hence find the general solution of 
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	11 (i)
	Show that 
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 is an integrating factor for the first-order differential equation
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	(ii)
	Solve this differential equation, given that y = 1 when x = 1.
	[6]

	(iii)
	Calculate the value of y when x = 1.2, giving your answer to three decimal places.
	[1]
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	12.
	a)  Find the integrating factor for the differential equation
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	b)  Find the general solution of this differential equation, giving your answer in the form 
y = f(x).
	[4]
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	13.
	Find the general solution of the differential equation
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	14.
	a)  Obtain the roots of the equation
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giving your answers in the form 
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	b)  Solve the differential equation
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given that y = 2 and 
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	15
	a)  Given that 
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 in terms of z and 
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	b)  It is given that y satisfies the differential equation 
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Show that the substitution 
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	c)  
(i)   Obtain the general solution of the differential equation
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(ii)  Hence obtain y in terms of x, given that y = 2 when x = ½. 
	[5]
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	16.
	(a)
(a)   Find the general solution of the differential equation 
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 (b)
Find the particular solution that satisfies y = 1 and 
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	17.
	(a)
(a)  Find the general solution of the differential equation
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Given that y = 1 at x = 0,

(b)
find the exact values of the coordinates of the minimum point of the particular solution curve,

(c)
draw a sketch of this particular solution curve.
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	18.
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(a)
Verify that x3ex is an integrating factor for the differential equation.

(b)
Find the general solution of the differential equation. 


(c)
Given that y = 1 at x =1, find y at x = 2.
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