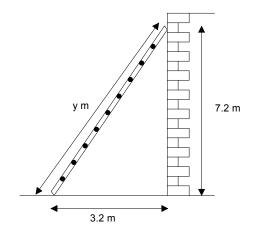
Schoolworkout Maths


GCSE Trigonometry: Assessment A

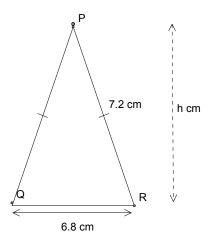
Your Name: Tutor Group:

End of GCSE target grade: Grade achieved:

Grade C objectives	©	(2)	8
I can use Pythagoras' theorem to find any side of a right-angled triangle			
I can use Pythagoras' theorem to find the height of an isosceles triangle			
I can use Pythagoras' theorem in practical problems			

1.

A ladder is leaning up the side of a wall.


The ladder reaches 7.2 m up the wall.

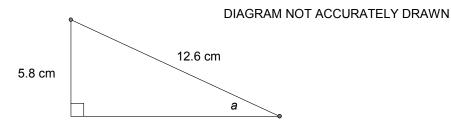
The bottom of the ladder is 3.2 m away from the base of the wall.

Calculate y, the length of the ladder.

$$y = m$$
 [3]

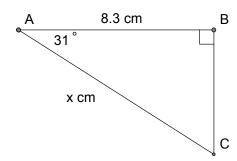
2. PQR is an isosceles triangle.

$$PQ = PR = 7.2 \text{ cm}$$


$$QR = 6.8 \text{ cm}$$

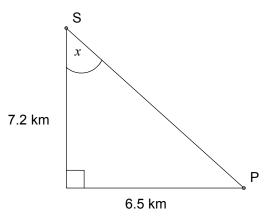
Calculate the height, *h*, of triangle PQR.

$$h = \dots$$
 [3]


Grade B objectives	©	(a)	8
• I can use sine, cosine and tangent to calculate an angle or a side in a right-angled triangle.			

3.

Calculate the size of the angle marked *a*. Give your answer to one decimal place.

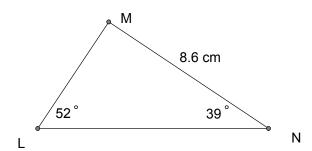

4. ABC is a right-angled triangle. AB = 8.3 cm Angle $CAB = 31^{\circ}$

Find the length of AC (marked x in the diagram). Give your answer to a suitable degree of accuracy.

$$x =$$
cm [4]

5. A ship leaves a port P and sails 6.5 km due West and then 7.2 km due North.

a) Calculate the size of angle x. Give your answer correct to 3 significant figures.


$$x =$$
° [2]

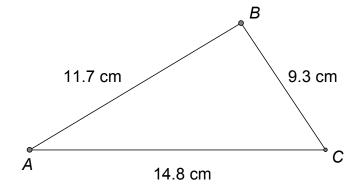
b) Calculate the bearing of the ship's final position, S, from the port, P.

										0		1]	

Grade A objectives	©	(1)	8
• I can use the sine rule to find the missing sides and missing angles in any triangle.			
• I can use the cosine rule to find the missing sides and missing angles in any triangle.			
• I can use the formula for the area of a non right-angled triangle.			

6.

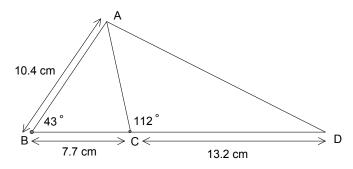
In triangle LMN: angle MLN = 52° angle LNM = 39° MN = 8.6 cm.


a) Calculate the length LN. Give your answer correct to 2 significant figures.

$$LN = \dots cm$$
 [4]

b) Calculate the area of triangle LMN. Give your answer correct to 2 significant figures.

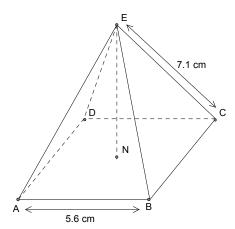
Area =
$$\dots$$
 cm² [3]


7.

Calculate the size of angle BAC.

Grade A* objectives	0	(2)	8
I can solve multi-step problems involving the sine and cosine rules.			
• I can solve trigonometry problems in 3 dimensions.			

8.


AB = 10.4 cm, BC = 7.7 cm, CD = 13.2 cm Angle ACD = 112 ° and angle ABC = 43°. Calculate the angle CAD.

9. ABCDE is a square-based pyramid.

AB = BC = CD = AD = 5.6 cm

N is the centre of the square ABCD.

E is directly above N.

a) Calculate the distance BD.

BD =cm	
	[2]

b) Calculate angle EBN.

c) Calculate the angle that ABE makes with the base of the pyramid.

[3]

-	_							f	•						١.	
1	١.	a	n	^	n	a	n	•	.о	0	а	n	n	~	v	•
		•	ч	_	,,	E			•	E	ч	$\mathbf{\omega}$	ч	_	n	

In order to get to the next grade (or in order to improve the quality of your work) you should...

The following aspect of your work was particularly good \dots