GCSE Trigonometry: Assessment B

Your Name:
End of GCSE target grade:

Tutor Group:
Grade achieved:

Grade C objectives	\odot	Θ	\otimes
- I can use Pythagoras' theorem to find any side of a right-angled triangle			
\bullet I can use Pythagoras' theorem to find the height of an isosceles triangle			
- I can use Pythagoras' theorem in practical problems			

1.

A ladder is leaning up the side of a wall.
The ladder reaches 7.2 m up the wall.
The bottom of the ladder is 3.2 m away from the base of the wall.
Calculate y , the length of the ladder.

$$
y=
$$

2. PQR is an isosceles triangle.

$\mathrm{PQ}=\mathrm{PR}=7.2 \mathrm{~cm}$
$\mathrm{QR}=6.8 \mathrm{~cm}$
Calculate the height, h, of triangle PQR .

$$
\begin{equation*}
h=. \tag{3}
\end{equation*}
$$

cm

Grade B objectives	\odot	Θ	\odot
\cdot I can use sine, cosine and tangent to calculate an angle or a side in a right-angled triangle.			

3.

Calculate the size of the angle marked a. Give your answer to one decimal place.

$$
a=\text {................ }
$$.\quad [3]

4. $A B C$ is a right-angled triangle.
$A B=8.3 \mathrm{~cm}$
Angle $C A B=31^{\circ}$

Find the length of $A C$ (marked x in the diagram).
Give your answer to a suitable degree of accuracy.

$$
x=\text {......................cm }
$$

5. A ship leaves a port P and sails 6.5 km due West and then 7.2 km due North.

a) Calculate the size of angle x. Give your answer correct to 3 significant figures.

$$
\begin{equation*}
x=\ldots \ldots \ldots \ldots \ldots \ldots .^{\circ} \tag{2}
\end{equation*}
$$

b) Calculate the bearing of the ship's final position, S , from the port, P .
\qquad

Grade A objectives	\odot	Θ	\otimes
\bullet I can use the sine rule to find the missing sides and missing angles in any triangle.			
\bullet I can use the cosine rule to find the missing sides and missing angles in any triangle.			
- I can use the formula for the area of a non right-angled triangle.			

6.

In triangle LMN :
angle $\mathrm{MLN}=52^{\circ}$
angle $\mathrm{LNM}=39^{\circ}$
$\mathrm{MN}=8.6 \mathrm{~cm}$.
a) Calculate the length LN. Give your answer correct to 2 significant figures.

$$
\mathrm{LN}=
$$

\qquad cm
b) Calculate the area of triangle LMN. Give your answer correct to 2 significant figures.

$$
\text { Area }=
$$

\qquad cm^{2}
7.

Calculate the size of angle BAC.

Angle BAC = \qquad .${ }^{\circ}$

Teacher feedback:

In order to get to the next grade (or in order to improve the quality of your work) you should...

The following aspect of your work was particularly good ...

