Schoolworkoui
 Mathe

Recap: Independent Events

Example 1: I travel by bus and train on my journey to work. Given that P (bus late) is 0.3 and independently P (train late) is 0.2 , calculate the probability that:
a) both the bus and the train are late;
b) either the bus or the train (or both) are late.

We can answer this question by drawing a tree diagram. Let $\mathrm{B}=$ bus late, $\mathrm{T}=$ train late .

a) $\mathrm{P}(\mathrm{B}$ and T$)=0.3 \times 0.2=0.06$
b) $\mathrm{P}(\mathrm{B} \mathrm{OR} \mathrm{T})=1-\mathrm{P}($ neither are late $)=1-0.7 \times 0.8=0.44$.

Example 2: Caroline plays a game with a fair coin. She keeps throwing the coin until a head is obtained, at which point she stops. Calculate the probability that:
a) the game finishes on the $3{ }^{\text {rd }}$ throw;
b) the game finishes in less than 5 attempts;
c) the game continues for more than 10 throws.
a) $\mathrm{P}\left(\right.$ game finishes on $3^{\text {rd }}$ go $)=\mathrm{P}($ Tail THEN Tail THEN Head $)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
b) P (game finishes in less than 5 attempts $)=\mathrm{P}\left(\right.$ finishes on $1^{\text {st }}$ or $2^{\text {nd }}$ or $3^{\text {rd }}$ or $4^{\text {th }}$ go)

But, $\quad \mathrm{P}\left(\right.$ game finishes on $1^{\text {st }}$ go $)=\mathrm{P}($ Head $)=\frac{1}{2}$
$\mathrm{P}\left(\right.$ game finishes on $2^{\text {nd }}$ go $)=\mathrm{P}(\mathrm{T}$ AND H$)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
$\mathrm{P}\left(\right.$ game finishes on $4^{\text {th }}$ go $)=\mathrm{P}(\mathrm{T}, \mathrm{T}, \mathrm{T}, \mathrm{H})=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}$
So $\mathrm{P}($ game finishes in less than 5 goes $)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{15}{16}$
c) $\mathrm{P}($ game continues for more than 10 throws $)=\mathrm{P}($ first 10 throws are tails $)=\left(\frac{1}{2}\right)^{10}=\frac{1}{1024}$

Dependent Events and Conditional Probability

Introductory example: The probability that it will be sunny tomorrow is $\frac{1}{3}$. If it is sunny, the probability that Susan plays tennis is $\frac{4}{5}$. If it is not sunny, the probability that Susan plays tennis is $\frac{2}{5}$. Find the probability that Susan plays tennis.

$$
\begin{aligned}
\mathrm{P}(\text { tennis }) & =\mathrm{P}(\text { sunny AND tennis })+\mathrm{P}(\text { not sunny AND tennis }) \\
& =\frac{1}{3} \times \frac{4}{5}+\frac{2}{3} \times \frac{2}{5}=\frac{8}{15}
\end{aligned}
$$

Example 2: On average I get up early 3 days out of 10 , and get up late one day in 10 .
I forget something on 2 out of every 5 days on which I am late and on one third of the days on which I am early. I do not forget anything on the days when I get up on time.
(a) Find the probability that I forget something.
(b) Confirm that for 80% of the time I am neither forgetful nor late.

Let $\quad \mathrm{E}=$ get up early
T = get up on time
$\mathrm{L}=$ get up late
$\mathrm{F}=$ forget something
$F^{\prime}=$ don't forget anything
The tree diagram then looks as follows:

a) $\mathrm{P}($ forget something $)=\mathrm{P}(\mathrm{E}$ and F$)+\mathrm{P}(\mathrm{T}$ and F$)+\mathrm{P}(\mathrm{L}$ and F$)$

$$
=\left(\frac{3}{10} \times \frac{1}{3}\right)+\left(\frac{6}{10} \times 0\right)+\left(\frac{1}{10} \times \frac{2}{5}\right)=\frac{7}{50}
$$

b) The two situations where I am neither forgetful nor late have been indicated on the tree diagram:

So $\quad \mathrm{P}($ neither forgetful of late $)=\frac{3}{10} \times \frac{2}{3}+\frac{6}{10} \times 1=\frac{4}{5}$
Therefore, on 80% of occasions I will neither forget anything nor be late.

