Schoolworkout
 Maths

Conditional Probability

Recap: Independent events.

If events A and B are independent, then the probability of B happening does not depend upon whether A has happened or not. Therefore

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}\left(\mathrm{~B} \mid \mathrm{A}^{\prime}\right)=\mathrm{P}(\mathrm{~B})
$$

Probability of B given that A has occurred
and

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B})
$$

A tree diagram can be drawn:

Dependent events:

If A and B are dependent events, the probability of B happening will depend upon whether A has happened or not.

We therefore have to introduce conditional probabilities in the tree diagram (as shown below):

The rule for combining probabilities for dependent events is

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B} \mid \mathrm{A})
$$

This is equivalent to saying

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})}{\mathrm{P}(\mathrm{~A})}
$$

Example:

Every morning I buy either The Times or The Mail. The probability that I buy The Times is $3 / 4$ and the probability that I buy The Mail is $1 / 4$. If I buy The Times, the probability that I complete the crossword is $2 / 5$, whereas if I buy The Mail the probability that I complete the crossword is $4 / 5$.
a) Find the probability that I complete the crossword on any particular day.
b) If I have completed the crossword, find the probability that I bought The Mail.

The tree diagram is:

Notation: $T=$ buy The Times $\quad \mathrm{M}=$ buy The Mail $\quad \mathrm{C}=$ complete crossword
a) From the tree diagram,

$$
\mathrm{P}(\text { complete crossword })=\mathrm{P}(\mathrm{~T} \text { and } \mathrm{C})+\mathrm{P}(\mathrm{M} \text { and } \mathrm{C})=\frac{6}{20}+\frac{4}{20}=\frac{1}{2}
$$

b) The probability that I bought The Mail given that I completed the crossword is given by

$$
\mathrm{P}(\mathrm{M} \mid \mathrm{C})=\frac{\mathrm{P}(\mathrm{M} \text { and } \mathrm{C})}{\mathrm{P}(\mathrm{C})}=\frac{4 / 20}{1 / 2}=\frac{2}{5}
$$

Example 2:

0.1% of the population carry a particular faulty gene.
A test exists for detecting whether an individual is a carrier of the gene.
In people who actually carry the gene, the test provides a positive result with probability 0.9.
In people who don't carry the gene, the test provides a positive result with probability 0.01 .
If someone gives a positive result when tested, find the probability that they actually are a carrier of the gene.

Let $G=$ person carries gene $P=$ test is positive for gene $N=$ test is negative for gene The tree diagram then looks as follows:

We want to find $P(G \mid P)=\frac{P(G \text { and } P)}{P(P)}$
However, $\mathrm{P}(\mathrm{P})=\mathrm{P}(\mathrm{G}$ and P$)+\mathrm{P}\left(\mathrm{G}^{\prime}\right.$ and P$)=0.0009+0.00999=0.01089$
Therefore, $\mathrm{P}(\mathrm{G} \mid \mathrm{P})=\frac{0.0009}{0.01089}=0.0826$ (to 3 significant figures)
So there is a very low chance of actually having the gene even if the test says that you have it.
Note: This example highlights the difficulty of detecting rare conditions or diseases.

Past Examination Question: (OCR)

Students have to pass a test before they are allowed to work in a laboratory. Students do not retake the test once they have passed it. For a randomly chosen student, the probability of passing the test at the first attempt is $1 / 3$. On any subsequent attempt, the probability of failing is half the probability of failing on the previous attempt. By drawing a tree diagram or otherwise,
a) show that the probability of a student passing the test in 3 attempts of fewer is 26/27,
b) find the conditional probability that a student passed at the first attempt, given that the student passed in 3 attempts or fewer.

Solution:

Let $\mathrm{P}=$ pass test $\quad \mathrm{F}=$ fail test

a) So $\mathrm{P}($ pass in 3 attempts or fewer $)=1 / 3+4 / 9+5 / 27=26 / 27$ as required
b) Let X stand for when a student passes the test.

We need $\mathrm{P}(X=1 \mid X \leq 3)=\frac{\mathrm{P}(X=1 \text { and } X \leq 3)}{\mathrm{P}(X \leq 3)}$.
But $\mathrm{P}(X=1$ and $X \leq 3)$ is the same as just $\mathrm{P}(X=1)$.
Therefore $\mathrm{P}(X=1 \mid X \leq 3)=\frac{1 / 3}{26 / 27}=\frac{9}{26}$

