OCR Statistics 1 Solutions June 2005

1 (i)	Rank A Rank B d d ²	1 4 -3 9	2 1 1 1	3 3 0 0	4 2 2 4	5 5 0 0					
	So $\sum d^2 = 14$ Therefore, d		$\frac{6\sum d^2}{n(n^2-1)}$	$\frac{1}{1} = 1 - \frac{1}{1}$	<u>6 ×14</u> 5(25 – 1	$\bar{b} = 1 - 0$	0.7 = 0.3	3			
(ii)	If the ranking reverse: Rank	В	a Spea 4	arman's 1 2		orrelatio 2 3			en the ran	kings mus	t be in
2 (i)	Rank C 2 5 3 4 1 $T \sim \text{Geo}(0.14)$ a) $P(T = 5) = 0.86^4 \times 0.14 = 0.0766$ (3 SF) b) $P(T = 1) = 0.14$ $P(T = 2) = 0.86 \times 0.14 = 0.1204$ $P(T = 3) = 0.86^2 \times 0.14 = 0.1035$ $P(T = 4) = 0.86^3 \times 0.14 = 0.0890$ P(T = 5) = 0.0766 (from above) $P(T = 6) = 0.86^5 \times 0.14 = 0.0659$ $P(T = 7) = 0.86^6 \times 0.14 = 0.0566$ Therefore $P(T < 8) = 0.652$ OR $P(T < 8) = 1 - P(T > 7) = 1 - 0.86^7 = 1 - 0.348 = 0.652$ (3 SF)										
(ii)	E(T) = 1/p = 7.14 (3 SF)										
3 (i)	 Let X = number of shoppers in the sample who buy washing powder. Then X ~ B(16, 0.35). a) P(X ≥ 8) = 1 - P(X ≤ 7) = 1 - 0.8406 = 0.1594 b) P(4 ≤ T ≤ 9) = P(T ≤ 9) - P(T ≤ 3) = 0.9771 - 0.1339 = 0.8432 										
(ii)	Now, $X \sim B($,		10	, , , , , , , , , , , , , , , , , , , ,						

ii) Now, $X \sim B(16, 0.38)$ $P(X = 6) = {}^{16}C_6 \times 0.38^6 \times 0.62^{10} = 0.202$

(i)

$$S_{xy} = 14464.10 - \frac{265 \times 274.6}{5} = -89.7$$

$$S_{xx} = 14176.54 - \frac{265^2}{5} = 131.54$$

$$S_{yy} = 15162.22 - \frac{274.6^2}{5} = 81.188$$
Therefore, $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-89.7}{\sqrt{131.54 \times 81.188}} = -0.868$ (3 sf)

- (ii) The PMCC would be unchanged the PMCC is unaffected by linear transformations of the variables.
- (iii) We need to find the regression line of y on x. $b = \frac{S_{xy}}{S_{yy}} = \frac{-89.7}{131.54} = -0.682$

Also,
$$\overline{y} = 54.92$$
, $\overline{x} = 53$.
So $a = \overline{y} - b\overline{x} = 54.92 - (-0.682) \times 53 = 91.1$

So the regression line is y = 91.1 - 0.682x

Substituting x = 60.4 gives $y = 91.1 - 0.682 \times 60.4 = 49.9$ cm

5 (i) UQ = 69 LQ = 45So IQR = 24 marks

4

- (ii) If 40% of candidates scored more than x marks, then 60% scored less than x. 60% of 1200 = 720. Reading across at 720 gives x = 63.
- (iii) Reading up from x = 68 gives a CF of 860. So number of people scoring above 68 is 1200 - 860 = 340
- (iv) The probability that a person scores more than 68 marks = 340 / 1200 = 0.2833The probability that all 5 people score more than 68 marks = $0.2833^5 = 0.00183$
- (v) The CF graph will now be a straight line between x = 35 and x = 55. This means that the LQ will be smaller than that found in (i). Therefore the IQR will be greater.

6 (i)
$$a = 4/5, b = 1/5, c = \frac{1}{4}, d = \frac{3}{4}, e = \frac{3}{4}, f = \frac{1}{4}$$

(ii)
$$P(R = 2) = \left(\frac{1}{2} \times \frac{4}{5} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{5} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{3}{4}\right) = \frac{9}{20}$$

(iii) $k = 1 - \frac{1}{10} - \frac{9}{20} - \frac{1}{5} = \frac{1}{4}$

(iv)
$$E(R) = (0 \times \frac{1}{10}) + (1 \times \frac{1}{4}) + (2 \times \frac{9}{20}) + (3 \times \frac{1}{5}) = 1.75$$

	$E(R^{2}) = (0^{2} \times \frac{1}{10}) + (1^{2} \times \frac{1}{4}) + (2^{2} \times \frac{9}{20}) + (3^{2} \times \frac{1}{5}) = 3.85$ Therefore, Var(R) = 3.85 - 1.75 ² = 0.7875						
7 (i)	Number of ways of choosing 7 people from $18 = {}^{18}C_7 = 31824$						
(ii)	Number of ways of choosing 2 people from Gloucester = ${}^{5}C_{2} = 10$ Number of ways of choosing 2 people from Hereford = ${}^{6}C_{2} = 15$ Number of ways of choosing 3 people from Worcester = ${}^{7}C_{3} = 35$ So total number of ways = $10 \times 15 \times 35 = 5250$ The probability is therefore $5250/31824 = 0.165$						
(iii)	Number of ways of choosing 5 people from Worcester = ${}^{7}C_{5} = 21$ Number of ways of choosing 2 people from Gloucester or Hereford = ${}^{11}C_{2} = 55$ Total number of ways = $21 \times 55 = 1155$ So probability = $1155/31824 = 0.0363$						
(iv)	There are 3 possibilities: Case 1: 2 from G, 2 from H and 3 from W: ${}^{5}C_{2} \times {}^{6}C_{2} \times {}^{7}C_{3}$ Case 2: 2 from G, 3 from H and 2 from W: ${}^{5}C_{2} \times {}^{6}C_{3} \times {}^{7}C_{2}$ Case 3: 3 from G, 2 from H and 2 from W: ${}^{5}C_{3} \times {}^{6}C_{2} \times {}^{7}C_{2}$						
	These add to make 12600. So probability is 12600/31824 = 0.396						