	Trapezium rule

To approximate an integral, such as 
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, we can divide the area into n strips.  Then 
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  is the width of each strip.

The formula for the trapezium rule is:
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Example:  Find an approximation for 
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 using the trapezium rule with 6 ordinates.
(NB:  6 ordinates means 5 strips).
Solution:  
[image: image5.wmf]1(1)

0.4

5

h

--

==



So, 
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	Simpson’s rule
Simpson’s rule is a more accurate way of estimating integrals.  Suppose the area is split into n strips (n must be even), then 
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OR IN WORDS  
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Example:  Find an approximation for 
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 using Simpson’s rule with 6 strips.

Solution:  
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So, 
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	Numerical solution of equations
The equation f(x) = 0 has a solution (or root) between x = a and x = b if f(x) changes sign in this interval.
Example:  Show that the equation 
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 has a root in the interval 1 < x < 2.

Solution:  Rearrange to the form f(x) = 0:
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Substitute in x = 1:  
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Substitute in x = 2:
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As there is a change in sign, there is a root in the interval 1 < x < 2.
	

	Iterative methods for finding roots
A root of the equation x = F(x) can sometimes be found using the iterative formula

xn+1 = F(xn)
starting with some initial value x1.

This method only works if the sequence of values converges.
	Example:  The sequence defined by the iterative formula
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converges to α.

a)  Find α correct to 3 d.p.

b)  State an equation of which α is a root.

Solution: a)   
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etc
	Sol’ns can be found by programming a calculator:  
1 = 0  .  5 × ln ( 2 × ANS + 3 ) = =  etc

The values you get converge to 0.753 (to 3 d.p.) – you should show all the values you get in the exam.

b)  To get the equation solved, replace 
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 in the iterative formula by x:    
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This is equivalent to 
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