	Let z = x + iy,  where i is the square root of -1.  Then
· The real part of z, written Re(z), is x;

· The imaginary part of z, written Im(z) is y;

· The complex conjugate of z, written z*, is 


z* = x – iy.
	

	Loci

Situation 1:  The set of complex numbers satisfying 
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|z| = k is represented by a circle, centre O, radius k:
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Situation 2:  The set of complex numbers satisfying 
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 is a circle, centre a, radius k.
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Situation 3:  The set of complex numbers satisfying the equation 
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 is the perpendicular bisector of the line joining a to b:
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Situation 4:  The complex numbers satisfying the equation arg(z – a) = (  is a half-line starting at a making angle ( with the positive real axis.



	Calculating with Complex Numbers:

Example:  Suppose w = 2 – 3i and z = 3 – 4i.

Addition:  Add the real and imaginary parts separately, so  w + z = 5 – 7i.

Subtraction:  Subtract the real and imaginary parts from each other, so


w – z = (2 – 3i) – (3 – 4i) = -1 + i

Multiplication:  You multiply complex numbers by using the rules for expanding two brackets AND remembering that i2 = -1.  So


wz = (2 – 3i)(3 – 4i) = 6 – 8i – 9i + 12i2

      = 6 – 17i – 12 = -6 – 17i

Division:  To divide complex numbers, you multiply through by the complex conjugate of the denominator:
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Solving Quadratic Eqns: e.g. 
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So z = 
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The solutions are 0.5 + 1.5i and 0.5 – 1.5i.
Note:  Complex solutions of a quadratic equation are always complex conjugates of one another.
	Argand Diagrams
Complex numbers can be represented on Argand Diagrams.

The modulus of a complex number z is the length of the line from 0 to z. So, if z = x + iy, then 
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The argument of a complex number is defined as the angle it makes with the positive real axis.  The argument of a complex number z is usually written in the range –π < arg(z) < π.
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Example:  Suppose w = 2 + i  and  z = 3 – 2i
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The argument of w is θ, where 
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So  arg(w) = 0.464.

The argument of z is negative (as z is below the axis).  Since 
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, then ( = 0.588.

Therefore, arg(z) = -0.588.
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