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	2 (i)
	The sum of the roots is equal to 
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Therefore  
p – q + p + p + q = 6

So

3p = 6

i.e.

p = 2



	(ii)
	The product of the roots is 
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So

(2 – q)(2)(2 + q) = -10

i.e.

2(4 – q2) = -10

i.e.

4 – q2 = -5

i.e

q2 = 9

So q = 3
(as q is positive)



	(iii)
	As p = 2 and q = 3, we know that the roots are -1, 2 and 5.

Using the result that:
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we have
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So
k = 3.

	
	

	3 (i)
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(using i2 = -1).


	(ii)
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(i.e. a real number)
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	(iii)
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	4 (i)
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	(ii)
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	(iii)
	Step 1:  Prove statement true when n = 1:  


From (i), we have shown that u1 is a multiple of 8.
Step 2:  Assume true when n = k, i.e. uk is a multiple of 8.

We need to prove the statement true when n = k + 1, i.e. we need to show uk+1 is a multiple of 8.

From (ii), we know that 
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But when you add two multiples of 8, you get another multiple of 8.

Therefore uk+1 is a multiple of 8.

So the result is true for n = k + 1.

Therefore, by induction, the result is true for all positive integer values of n.

	
	

	5 (i)
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	(ii)
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	(iii)
	a) As n gets larger and larger, 
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So, 
[image: image16.wmf]2

1

2

1

41

r

r

¥

=

=

-

å


b) 
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	6 (i)
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The modulus of a, is 
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The angle 
[image: image19.wmf]q

 is tan-1(3/4) = 0.644.
Therefore arg(a) = -0.644.



	(ii)
	Since |a| = 5, we are asked to draw the locus of |z – a| = 5.

The locus should be a circle, centre point A and with radius 5.

[image: image29.wmf]4

-3

A

Real axis

Imaginary axis

q

 



	(iii)
	a)  The locus crosses the imaginary axis (which is where the real part is zero) at two places.
One place is the origin, corresponding to the complex number 0.

The other point corresponds to the complex number -6i.

b)  We can see where arg(z) = arg(a) in the above diagram.  Points satisfying this equation are on the dotted line.

The non-zero value on the locus corresponds to the complex number 8 – 6i.
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	7 (i)
	(1, 0) maps to (1, 2)
(0, 1) maps to (-2, 1)

(1, 1) maps to (-1, 3)




	(ii)
	The determinant of a transformation matrix represents the scale factor for areas.
The area of the image must be 5 times the area of the object.
As the object is a unit square, the image must have area 5.



	(iii)
	We need to calculate the size of angle θ (shown in the diagram above).

tan θ = 2/1 = 2

i.e.
θ = 63.4°
(this is the angle of rotation).

The other transformation is an enlargement centre (0, 0), scale factor √5.



	(iv)
	The matrix is
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(see formula book).

Putting θ = 63.4°, we get that the matrix is:
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(Note that these exact values can be found by identifying cosθ and sinθ from the diagram above.

	
	

	8 (i)
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	(ii)
	Step 1:  Find the determinant (done above)

Step 2:  Find the matrix of minor determinants:
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.

Step 3:  Reverse every other sign (starting with the second):
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Step 4:  Take the transpose and divide by the determinant:
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	(iii)
	The equations can be represented as
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, i.e. the matrix M has a = 1.
We can get the solutions using the inverse matrix:
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.

Therefore x = 0, y = z = 1.



	(iv)
	These equations correspond to the value a = 0 in the matrix M.
As the determinant is now 0, the equations will not have a unique solution.


      2y – z = k

(

2x + 3y – z = 2
(

2x – y + z = 0 

(
If we try to eliminate x, we get


2y – z = k

(

4y – 2z = 2

( - (
Dividing the second equation by 2 gives
2y – z = 1.

These two equations are therefore the same when k = 1.

So the equations have solutions when k = 1 (but when k is not 1 the equations are inconsistent and therefore cannot be solved).



	(v)
	The equations are:

      2y – z = 1

(

2x + 3y – z = 2
(

2x – y + z = 0 

(
If x = z, the equations become:


2y – x = 1

i.e
2y – x = 1


2x + 3y – x = 2
i.e
x + 3y = 2


2x – y + x = 0 

i.e.
3x – y = 0

If we add together the top two equations we get 5y = 3, i.e. y = 0.6.

From the top equation, this means x = 0.2.

These values x = 0.2 and y = 0.6 work in all three equations.

So there is a solution with x = z.
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