

Topic 2:  Differential Equations:  Summary Information
A differential equation is an equation connecting a function and its derivatives.
A first-order differential equation involves only first derivatives.  Examples of first-order differential equations are
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The first and third of these are examples of linear differential equations as the y and 
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terms appear only in the first degree (they are not squared or cubed).

A second-order differential equation involves second derivatives. Examples of second-order differential equations are
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These are both linear differential equations.

METHODS FOR SOLVING FIRST-ORDER DIFFERENTIAL EQUATIONS
Method 1:  Finding the complementary function and a particular solution.
This method is suitable for solving only linear first-order differential equations.

Method 2:  Separating the variables (as in C4)
This method only works for differential equations which can be rearranged to the form 
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Method 3:  Integrating factors

This method works if the differential equation can be rearranged to the form 
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LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS
Suppose that the differential equation has the form 
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Step 1:  Find the complementary function, that is the solution to the equation 
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The complementary function is 
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 where m is the solution to the auxiliary equation, 
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Step 2:  Find the particular solution, that is a function that satisfies the original differential equation.
Step 3:  The general solution to the original differential equation is



y = complementary function + particular solution

EXAMPLE:

Find the general solution to the differential equation 
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Solution:  
The auxiliary equation is 2m – 3 = 0.
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Therefore the complimentary function is 
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Try 
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Substituting these into the original differential equation gives:
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Therefore the particular solution is 
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So, the general solution to the original differential equation is 
[image: image20.wmf]x

x

e

Ae

y

2

5

.

1

+

=

.

DIFFERENTIAL EQUATIONS WITH SEPARABLE VARIABLES

Suppose that the differential equation has the form 
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The variables can then be separated out:
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EXAMPLE:

Find the solution to the differential equation 
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 given that y = 2e when x = 1.
SOLUTION:

We first separate out the variables:
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Put in integration signs:
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Evaluating the right hand side:  
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Evaluating the right hand side:
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Put together:
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Take exponentials of both sides:

[image: image31.wmf]c

x

x

e

y

+

-

-

=

+

1

ln

1








[image: image32.wmf]c

x

x

e

e

e

y

1

ln

1

-

=

+








[image: image33.wmf]1

-

=

x

Axe

y


Substitute in y = 2e and x = 1:
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Therefore



A = 2

So the solution is
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SOLVING DIFFERENTIAL EQUATIONS WITH  INTEGRATING FACTORS

This method works if the differential equation can be rearranged to the form 
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Step 1:  Rearrange the differential equation to the form 
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Step 2:  Find the integrating factor:  
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Step 3:  Multiply through by the integrating factor:  
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.  This can be written as 
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Step 4:  The solution therefore is  
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EXAMPLE:  
Given that -1 < x < 1, find the general solution of the differential equation 
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SOLUTION:

First we get the differential equation into the correct form by dividing by 
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We therefore see that 
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Next we find 
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The integrating factor is 
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Multiply equation (*) by I(x):
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This simplifies to  
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This is equivalent to  
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i.e.  
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Using tables we get:  
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Substitute 
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USING SUBSTITUTIONS TO TRANSFORM A DIFFERENTIAL EQUATION

Sometimes it is possible to solve more complex differential equations by changing the variables using a substitution.
EXAMPLE:  
Show that the differential equation 
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 can be transformed into a linear differential equation by means of the substitution 
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SOLUTION:
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The equation 
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Multiply through by 
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(a linear differential equation).

The auxiliary equation is 
m + 2 = 0
i.e.  m = -2.

So the complementary function is 
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 as a particular solution.  Then  
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Substitute into the differential equation to get:




(2ax + b) + 2(
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Comparing coefficients we see that:





a = 1
(coefficients of 
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2a + 2b = 0     (coefficients of x)



i.e.
b = -1





b + 2c = 0
(coefficients of units)





c = ½ 

Therefore a particular solution is 
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Hence the solution to the differential equation is 
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So,  
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SOLVING 
SECOND-ORDER DIFFERENTIAL EQUATIONS

In FP3, we need to solve second-order differential equations with the form
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STEP 1:  Find the complementary function.  
This is the solution to the reduced equation 

[image: image84.wmf]0

2

2

=

+

+

cy

dx

dy

b

dx

y

d

a

.

We find the complementary function by solving the auxiliary equation, which is the quadratic:
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There are three cases to consider.

Case 1:  The auxiliary equation has two distinct, real roots.  If these roots are 
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Case 2:  The auxiliary equation has a repeated real root.  If this repeated root is 
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Case 3:  The auxiliary equation has complex roots, 
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STEP 2:  Find the particular solution.

The particular solution is any function 
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The choice of particular solution depends on the nature of the function on the right-hand side of this differential equation.
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STEP 3:  Find the general solution.
The general solution of the original differential equation is formed by ADDING the complementary function and the particular solution together.

STEP 4:  Use the boundary conditions

If you are given boundary conditions (i.e. values for y or 
[image: image94.wmf]dy

dx

 corresponding to given x values) you can substitute these into the general solution in order to find the values of any unknown constants.

Further note:

If the natural choice for the particular solution already forms part of the complementary function, you need to adjust it by multiplying it by x.  Mathematically, this means that if the usual form for the particular solution would be y = F(x), but this forms part of the complementary function, you would instead use y = xF(x). This technique will be illustrated in example 3 below.
EXAMPLE 1:

Find the general solution to the differential equation
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Given that y = 0 when x = 0, and that y remains finite as x → ∞, find y in terms of x.

SOLUTION:

Reduced equation:
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Auxiliary equation:
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m = -1 or m = 4

Complementary function is
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Try 
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Then 
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Substituting these into the original differential equations gives:
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Comparing coefficients:


cos2x:

-4a – 6b – 4a = 0
i.e.
8a = -6b

sin2x:

-4b + 6a – 4b = 50
i.e.
-8b + 6a = 50







i.e.
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i.e.
a = 3






So
b = -4

So the particular solution is  
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So the general solution is 
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Boundary conditions:

Substituting x = 0, y = 0 gives:
0 = A + B + 3

i.e. A + B = -3

Next consider what happens as x → ∞
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3cos2x remains finite



4 sin2x remains finite

but
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As we are told that y remains finite as x → ∞, we must have that B = 0.  Therefore A = -3.

So the overall solution is 
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EXAMPLE 2:
Find the general solution for the differential equation 
[image: image110.wmf]2

2

420100

dxdx

xt

dt

dt

-+=

.

Find the solution corresponding to the initial conditions x = 0 and 
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SOLUTION:

Reduced equation:
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Auxiliary equation:


[image: image113.wmf]2

4200

mm

-+=







[image: image114.wmf]41642048

24

22

i

mi

±-´±

===±


Therefore the complementary function is:  
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As the right hand side of the original differential equation is a linear function, we choose to use a linear function as the particular solution.

Let 
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Then 
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Substituting these into the differential equation gives:
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Comparing coefficients:
Coefficients of t:

20a = 100
i.e. a = 5

Coefficients of units:

-4a + 20b = 0





-20 + 20b = 0





b = 1.

Therefore  x = 5t + 1 is a particular solution.

So the general solution is 
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Boundary conditions:

Substitute in x = 0, t = 0:
0 = 1(A) + 1

i.e.  A = -1
Now we need to differentiate to find 
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Substitute in 
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          -2 + 4B + 5 = 0





B = ¾

 So the overall solution is  
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EXAMPLE 3:

Consider the differential equation 
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Find y in terms of x, given that y = 0 and 
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SOLUTION:

Reduced equation:  
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Auxiliary equation:
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(m – 12)(m – 2) = 0





m = 12 or m = 2

So the complementary function is 
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The right hand side of the differential equation is 
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 as a particular solution, but this already forms part of the complementary function.  Instead, we try 
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(using the product rule)
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Substituting into the original differential equation 
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If we simplify the LHS, we get:
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So 
a = -0.4

Therefore the particular solution is 
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So the general solution is 
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Boundary conditions:

Substitute in y = 0, x = 0:

0 = A + B

i.e.  A = -B
To use the second boundary condition, we need to differentiate:  
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Substitute in 
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0 = 12A + 2B – 0.4






0.4 = 12(-B) + 2B






B = -0.04






A = 0.04

So 
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